Disconnected Colors in Generalized Gallai-Colorings

نویسندگان

  • Shinya Fujita
  • András Gyárfás
  • Colton Magnant
  • Ákos Seress
چکیده

Gallai-colorings of complete graphs—edge colorings such that no triangle is colored with three distinct colors—occur in various contexts such as the theory of partially ordered sets (in Gallai’s original paper), information theory and the theory of perfect graphs. A basic property of GallaiQ1 colorings with at least three colors is that at least one of the color classes must span a disconnected graph. We are interested here in whether this or a similar property remains true if we consider colorings that do not contain a rainbow copy of a fixed graph F . We show that such graphs F are very close to bipartite graphs, namely, they can be made bipartite by the removal of at most one edge. We also extend Gallai’s property for two infinite families and show that it also holds when F is a path with at most six vertices. C © 2012 Wiley Periodicals, Inc. J. Graph Theory 00: 1–11, 2012 Q2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey-type results for Gallai colorings

A Gallai-coloring (G-coloring) is a generalization of 2-colorings of edges of complete graphs: a G-coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Here we extend some results known earlier for 2-colorings to G-colorings. We prove that in every G-coloring of Kn there exists each of the following: 1. a monochromatic double star with at...

متن کامل

Gallai colorings of non-complete graphs

Gallai-colorings of complete graphs – edge colorings such that no triangle is colored with three distinct colors – occur in various contexts such as the theory of partially ordered sets (in Gallai’s original paper), information theory and the theory of perfect graphs. We extend here Gallai-colorings to non-complete graphs and study the analogue of a basic result – any Gallai-colored complete gr...

متن کامل

Gallai's Theorem for List Coloring of Digraphs

A classical theorem of Gallai states that in every graph that is critical for k-colorings, the vertices of degree k − 1 induce a tree-like graph whose blocks are either complete graphs or cycles of odd length. We provide a generalization to colorings and list colorings of digraphs, where some new phenomena arise. In particular, the problem of list coloring digraphs with the lists at each vertex...

متن کامل

Gallai colorings and domination in multipartite digraphs

Assume that D is a digraph without cyclic triangles and its vertices are partitioned into classes A1, . . . , At of independent vertices. A set U = ∪i∈SAi is called a dominating set of size |S| if for any vertex v ∈ ∪i/ ∈SAi there is a w ∈ U such that (w, v) ∈ E(D). Let β(D) be the cardinality of the largest independent set of D whose vertices are from different partite classes of D. Our main r...

متن کامل

Generalized colorings and avoidable orientations

Gallai and Roy proved that a graph is k-colorable if and only if it has an orientation without directed paths of length k. We initiate the study of analogous characterizations for the existence of generalized graph colorings, where each color class induces a subgraph satisfying a given (hereditary) property. It is shown that a graph is partitionable into at most k independent sets and one induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2013